
The ‘this’ keyword
“The” language of the Web

Fulvio Corno

Luigi De Russis

Enrico Masala

2

‘THIS’
JavaScript – The language of the Web

Applicazioni Web I - Web Applications I - 2022/2023

JavaScript: The Definitive Guide, 7th Edition
Chapter 8. Classes

You Don't Know JS: this & Object Prototypes

3

‘this’ in JavaScript

• Given the peculiar treatment of Objects in JS, the ‘this’ keyword
behaves differently than other OO languages
– ‘this’ does not refer to the function in which it appears
– ‘this’ does not (always) refer to the current object (functions are not always

bound as object methods)
– ‘this’ does not refer to the context (i.e., external function) in which the function

is defined
– ‘this’ does not refer to the object that generated the call (e.g., the object

generating an event)
• Nevertheless, ‘this’ is extremely useful in callbacks and object methods
– We must learn its rules…

Applicazioni Web I - Web Applications I - 2022/2023

4

The Golden Rule

• Within each function, the ‘this’ keyword is always bound to some
specific object

• The binding of ‘this’ depends exclusively on the call site of the function
(how the function is called)
– ☢ Does not depend on how the function is declared (function expression,

function statement, passed reference, …)
– ☢ Does not depend on where the function is declared (global, object property,

nested, …)

• 🛑 Notable exception: Arrow Functions (see at the end)

Applicazioni Web I - Web Applications I - 2022/2023

5

The Call Site Of a Function

• Locate where the function is called from
– Imagine being in a function, just called
– Go back one step in the call stack, and check where you were just before being

called
– That location is the true call site

• The same function might be called from different places, in different
times
– Each time, the call site for that invocation is the only important information

Applicazioni Web I - Web Applications I - 2022/2023

6

Sample Call Site Analysis

Applicazioni Web I - Web Applications I - 2022/2023

function baz() {
// call-stack is: `baz`
// so, our call-site is in the global scope

console.log("baz");
bar(); // <-- call-site for `bar`

}

function bar() {
// call-stack is: `baz` -> `bar`
// so, our call-site is in `baz`

console.log("bar");
foo(); // <-- call-site for `foo`

}

function foo() {
// call-stack is: `baz` -> `bar` -> `foo`
// so, our call-site is in `bar`

console.log("foo");
}

baz(); // <-- call-site for `baz`

Try me!

7

Rule #1: Default Binding

• Standalone function invocation
let a = foo();
– Normal function call
– Default rule, applies if other special cases don’t apply

• When in strict mode, ‘this’ inside ‘foo’ is undefined
• When not in strict mode, ‘this’ inside ‘foo’ is the global object
– global in nodejs, or window in the browser

• It is useless, no reason to use it
– 👁🗨Never use ‘this’ inside functions called in standalone mode

Applicazioni Web I - Web Applications I - 2022/2023

8

Rule #2: Implicit Binding

• Called in the context of an object (method)
let a = obj.foo() ;

• foo is a (function-valued) property of obj
– Defined inline with a function expression
– Defined elsewhere but assigned to a property

• Inside foo(), this refers to obj
– The specific object instance on which the function is called
– this.a refers to property a of obj

Applicazioni Web I - Web Applications I - 2022/2023

function extrafoo() {
console.log(this.a);

}

let obj = {
a: 2,
foo: extrafoo

};

obj.foo(); // 2

9

Beware: Losing The Object Reference
function foo() {

console.log(this.a);
}

let obj = {
a: 2,
foo: foo

};

let bar = obj.foo;
// function reference/alias!

bar(); // "oops, global"

Applicazioni Web I - Web Applications I - 2022/2023

Call Site

function foo() {
console.log(this.a);

}

function doFoo(fn) {
// `fn` is just a reference to `foo`

fn();
}

let obj = {
a: 2,
foo: foo

};

doFoo(obj.foo); // "oops, global"

Call Site

10

Beware: Losing The Object Reference
function foo() {

console.log(this.a);
}

let obj = {
a: 2,
foo: foo

};

let bar = obj.foo;
// function reference/alias!

bar(); // "oops, global"

Applicazioni Web I - Web Applications I - 2022/2023

Call Site

function foo() {
console.log(this.a);

}

function doFoo(fn) {
// `fn` is just a reference to `foo`

fn();
}

let obj = {
a: 2,
foo: foo

};

doFoo(obj.foo); // "oops, global"

Call Site

Must be careful, if we pass the function reference
around, we lose the object reference, and the

“default binding” will be applied.

👁🗨 Always pass objects, never functions, if you
want ‘this’ to work in the passed object 👁🗨

11

Rule #3: Explicit Binding

• You may call a function indirectly, with a calling method (natively defined
for all JS functions)
let y = foo.call(object, param, param, param)
let y = foo.apply(object, [param, param, param])

• In this case the call to foo is explicitly bound to the object (1st

parameter)
– Inside the function, this is bound to object
– It basically behaves like object.foo(), even if foo is not a property of object.

• Often used inside libraries, rarely in the final programs

Applicazioni Web I - Web Applications I - 2022/2023

12

Hard Binding

• Even the explicit binding may be “lost”, if you pass the function around
(instead of passing the object)

• You may force a binding to a function using its .bind() method to
construct a new ‘bound’ function
let newfoo = foo.bind(object) // newfoo is a bound function
let y = newfoo(params)

• The newfoo function will always be bound to object

Applicazioni Web I - Web Applications I - 2022/2023

13

Rule #4: new Binding

• When an object is created with a constructor function call, the function
is bound to the newly created object
let obj = new Foo() ;
– Within Foo, this refers to the new object (later assigned to obj)

Applicazioni Web I - Web Applications I - 2022/2023

14

Aside: How ‘new’ Works

• JS constructor call
– when a function is invoked with new in

front of it
let object = new Func() ;

1. a brand-new object {} is created
(aka, constructed) out of thin air

2. the newly constructed object is
[[Prototype]]-linked (not relevant
now)

3. the newly constructed object is set
as the this binding for that
function call

4. unless the function returns its own
alternate object, the new-invoked
function call will automatically
return the newly constructed
object.

Applicazioni Web I - Web Applications I - 2022/2023

15

Summary Of Rules

• Is the function called with new (new binding)? If so, this is the newly
constructed object.
var bar = new Foo() ;

• Is the function called with call or apply (explicit binding), even hidden
inside a bind hard binding? If so, this is the explicitly specified object.
var bar = foo.call(obj2) ;

• Is the function called with a context (implicit binding), otherwise known as an
owning or containing object? If so, this is that context object.
var bar = obj1.foo() ;

• Otherwise (default binding). If in strict mode, this is undefined, otherwise
this is the global object (global in node, window in browsers).
var bar = foo()

Applicazioni Web I - Web Applications I - 2022/2023

16

Exception : Arrow Functions =>

• 🚫The above rules do not apply to Arrow
Functions
let fun = (n) => { this.a=n; }

• Arrow functions adopt the 'this' binding
from the enclosing function scope (or
global scope)
– Check the call site of the enclosing function!

• Extremely handy in event handlers and
callbacks

Applicazioni Web I - Web Applications I - 2022/2023

function foo() {
setTimeout(() => {
// `this` here is lexically
// adopted from `foo()`

console.log(this.a);
},100);

}

var obj = {
a: 2

};

foo.call(obj); // 2

17

In Practice…
Rule Example at call site Suggestion

let foo = function(n) { this.a = n ; }

4. New binding let y = new foo(3) ; Normal usage for object constructors

3. Explicit binding let y = foo.call(obj, n) ;
let newfoo = foo.bind(obj) ;

Seldom used in user code, mostly in
libraries

2. Implicit binding let y = obj.foo() ; Normal usage for object methods

1. Default binding let y = foo() ; Never use.
Does not work in Strict mode.

Exception:
Arrow Functions

let foo = (n)=>{ this.a = n ; }
Uses surrounding scope (closure over this)

Useful in callbacks (event handlers,
async functions, …)

Applicazioni Web I - Web Applications I - 2022/2023

18

In Practice…
Rule Example at call site Suggestion

let foo = function(n) { this.a = n ; }

4. New binding let y = new foo(3) ; Normal usage for object constructors

3. Explicit binding let y = foo.call(obj, n) ;
let newfoo = foo.bind(obj) ;

Seldom used in user code, mostly in
libraries

2. Implicit binding let y = obj.foo() ; Normal usage for object methods

1. Default binding let y = foo() ; Never use.
Does not work in Strict mode.

Exception:
Arrow Functions

let foo = (n)=>{ this.a = n ; }
Uses surrounding scope (closure over this)

Useful in callbacks (event handlers,
async functions, …)

Applicazioni Web I - Web Applications I - 2022/2023

19

References

• You Don't Know JS: this & Object Prototypes - 1st Edition, Kyle Simpson,
https://github.com/getify/You-Dont-Know-JS/tree/1st-
ed/this%20%26%20object%20prototypes , Chapter 1 and Chapter 2

Applicazioni Web I - Web Applications I - 2022/2023

https://github.com/getify/You-Dont-Know-JS/tree/1st-ed/this%20%26%20object%20prototypes
https://github.com/getify/You-Dont-Know-JS/tree/1st-ed/this%20%26%20object%20prototypes

20

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2022/2023

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

