
01UDFOV/01TXYOV Applicazioni Web I / Web Applications I [2022/2023]

Lab 11: Multi-user Application with Authentication

In this lab, you will do two exercises to complete the FilmLibrary app: a) to commit the work developed so

far on GitHub Classroom – to experiment with the platform in preparation of the exam – and b) to implement

the login. After completing the entire lab, you are free to push again on your GitHub Classroom’s private

repository.

1. Commit your work to GitHub Classroom

As reported in the exam rules, you will use GitHub Classroom to submit your web application for the

evaluation. To avoid last-minute issues, this exercise is to verify that you are successfully able to use the

GitHub Classroom platform.

According to the course you belong to, you can submit what you developed so far at the following links:

• Applicazioni Web I: https://classroom.github.com/a/g5Hi-YAN

• Web Applications I [A-H]: https://classroom.github.com/a/m6R4j53E

• Web Applications I [I-Z]: https://classroom.github.com/a/1Xi3Mgf6

You can find instructions on how to use and submit on GitHub Classroom in the linked PDF document.

NOTE: the submitted application will not be NOT evaluated in any way. It is just a way for you to become

familiar with the system.

2. Login and Logout Your Users

You will add the possibility of having multiple users in your application, enabling them to authenticate (i.e.,

login and logout functionalities) for managing their films. Non-authenticated users won’t see a list of films

anymore.

• In the front-end, add a new page (with a dedicated route) with a form, which will be used to log in.

The page should be well structured in terms of needed components and appropriate states. The login

form will have two mandatory fields: email and password. The login form should be validated before

its submission, and you must use proper error messages when inconsistencies are found. Specifically,

at least the following checks should be executed:

o When a field is missing or empty it must be forbidden to send a log-in request to the server.

o The email should be properly formatted (i.e., something@something.something).

• In Express, implement the login process by exploiting the Passport authentication middleware.

o Add a new user with username “testuser@polito.it” and password: “password” in the

database.

Beware: do not store plain text passwords in the database! Use scrypt (see the hints) to

generate a hash of the passwords before saving them.

o Create at least three new films in the database and assign them to the newly created user.

• When the login process fails, the front-end should display a suitable error message (e.g., “Incorrect

username or password”) and continue to show the login form. Instead, when the login is successful,

https://classroom.github.com/a/g5Hi-YAN
https://classroom.github.com/a/m6R4j53E
https://classroom.github.com/a/1Xi3Mgf6
https://polito-wa1-aw1-2023.github.io/materials/GH-Classroom-Instructions.pdf
https://www.passportjs.org/

the application redirects the users to their film list page, showing a message like:

“Welcome, {name_of_the_user}”.

• Identify the routes that need to be authenticated (e.g., those to get or modify the list of films) and

protect them accordingly. Non-authenticated users must not see any film, meanwhile authenticated

users must see only their films.

• Implement the logout functionality, again by exploiting the Passport authentication middleware.

When the users are logged out, redirect them to the login form.

Finally, if you want, push the solution of this lab on the private repository created for you by GitHub

Classroom.

Hints:

1. Note: the password of the users already inserted into the database is password.

2. You can use the following website to generate the hash of a password, according to scrypt:

https://www.browserling.com/tools/scrypt.

If you need to generate a salt by hand, you can use https://www.browserling.com/tools/random-

hex, considering the length of the generated hex as the one of the salt (e.g., 16).

https://www.browserling.com/tools/scrypt
https://www.browserling.com/tools/random-hex
https://www.browserling.com/tools/random-hex

