01UDFOV/01TXYOV Applicazioni Web | / Web Applications | [2022/2023]

Lab 2: Database integration

In this lab, you will implement the integration between your JavaScript application and a local database.

1. Retrieve data from the database

Modify the program developed in the last lab to integrate it with a local database. To that end, the first
step is to download the database provided by us called “films.db” (see hints below). It contains a
collection of films with the fields described in the first lab (note: if you did not complete the lab, you can
download and start to work from the proposed solution).

Specifically, you should add the following asynchronous methods to the FilmLibrary to retrieve data from
the database (you are free to choose the methods' name, but we strongly suggest assigning descriptive
ones):

e Get all the films stored in the database and return (a Promise that resolves to) an array of Film
objects.

e Get all the favorite films stored in the database and return (a Promise that resolves to) an array of
Film objects.

e Get all the films watched today stored in the database and return (a Promise that resolves to) an
array of Film objects.

e Get, through a parametric query, the films stored in the database whose watch date is earlier than
a given date received as a parameter. Return (a Promise that resolves to) an array of Film objects.

o Get, through a parametric query, the films in the database whose rating is greater than or equal to
a given number received as a parameter. Return (a Promise that resolves to) an array of Film
objects.

e Get, through a parametric query, the films in the database whose title contains a given string
received as a parameter. Return (a Promise that resolves to) an array of Film objects.

Invoke the methods you have just implemented to check if they are working correctly and print the result.

2. Modify the data stored in the database

In this exercise, you will add a set of methods to the FilmLibrary object to manipulate the data stored in the
database (note: before implementing this exercise, create a copy of the local database file since, if correctly
implemented, the following methods permanently modify the content of the database).

Specifically, you should implement the following functionalities and invoke them to check if they are
working correctly:

e Store a new movie into the database. Once completed, print a confirmation/failure message.
e Delete a movie from the database (using its ID as a reference). Once completed, print a
confirmation/failure message.

o Delete the watch date of all the films stored in the database. Once completed, print a
confirmation/failure message.

Hints:

1. The file “films.db” is included in the repository available on GitHub:
https://github.com/polito-WA1-AW1-2023/lab02-node-database/blob/main/films.db

2. |If you prefer, you can use the available Lab 1 solution as starting point:
https://github.com/polito-WA1-AW1-2023/lab01-node

3. Asyou saw in the lectures, you can connect to an SQLite database using the following module:

sqlite3 (https://www.npmjs.com/package/sqlite3) — the basic library

4. To browse the content of the database, you can use one of the two following approaches:
a. Download the Visual Studio Code SQLite extension (you can search for it in VSCode
extension hub or browsing the following link):
https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sglite
b. Download the application DB Browser for SQLite:
https://sqlitebrowser.org/dl/

https://github.com/polito-WA1-AW1-2023/lab02-node-database/blob/main/films.db
https://github.com/polito-WA1-AW1-2023/lab01-node
https://www.npmjs.com/package/sqlite3
https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite
https://sqlitebrowser.org/dl/

